Insights into dynamic sound localisation: A direction-dependent comparison between human listeners and a Bayesian model

Author:

McLachlan GlenORCID,Majdak PiotrORCID,Reijniers Jonas,Mihocic Michael,Peremans HerbertORCID

Abstract

AbstractSelf-motion is an essential but often overlooked component of sound localisation. While the directional information of a source is implicitly contained in head-centred acoustic cues, that acoustic input needs to be continuously combined with sensorimotor information about the head orientation in order to decode these cues to a world-centred frame of reference. On top of that, the use of head movement significantly reduces ambiguities in the directional information provided by the incoming sound. In this work, we evaluate a Bayesian model that predicts dynamic sound localisation, by comparing its predictions to human performance measured in a behavioural sound-localisation experiment. Model parameters were set a-priori, based on results from various psychoacoustic and sensorimotor studies, i.e., without any post-hoc parameter fitting to behavioral results. In a spatial analysis, we evaluated the model’s capability to predict spatial localisation responses. Further, we investigated specific effects of the stimulus duration, the spatial prior and sizes of various model uncertainties on the predictions. The spatial analysis revealed general agreement between the predictions and the actual behaviour. The altering of the model uncertainties and stimulus duration revealed a number of interesting effects providing new insights on modelling the human integration of acoustic and sensorimotor information in a localisation task.Author summaryIn everyday life, sound localisation requires both interaural and monaural acoustic information. In addition to this, sensorimotor information about the position of the head is required to create a stable and accurate representation of our acoustic environment. Bayesian inference is an effective mathematical framework to model how humans combine information from different sources and form beliefs about the world. Here, we compare the predictions from a Bayesian model for dynamic sound localisation with data from a localisation experiment. We show that we can derive the model parameter values from previous psychoacoustic and sensorimotor experiments and that the model without any post-hoc fitting, can predict general dynamic localisation performance. Finally, the discrepancies between the modelled data and behavioural data are analysed by testing the effects of adjusting the model parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3