Author:
Zhuang Xiaowei,Vo Van,Moshi Michael A.,Dhede Ketan,Ghani Nabih,Akbar Shahraiz,Chang Ching-Lan,Young Angelia K.,Buttery Erin,Bendik William,Zhang Hong,Afzal Salman,Moser Duane,Cordes Dietmar,Lockett Cassius,Gerrity Daniel,Kan Horng-Yuan,Oh Edwin C.
Abstract
AbstractGenome sequencing from wastewater has emerged as an accurate and cost-effective tool for identifying SARS-CoV-2 variants. However, existing methods for analyzing wastewater sequencing data are not designed to detect novel variants that have not been characterized in humans. Here, we present an unsupervised learning approach that clusters co-varying and time-evolving mutation patterns leading to the identification of SARS-CoV-2 variants. To build our model, we sequenced 3,659 wastewater samples collected over a span of more than two years from urban and rural locations in Southern Nevada. We then developed a multivariate independent component analysis (ICA)-based pipeline to transform mutation frequencies into independent sources with co-varying and time-evolving patterns and compared variant predictions to >5,000 SARS-CoV-2 clinical genomes isolated from Nevadans. Using the source patterns as data-driven reference “barcodes”, we demonstrated the model’s accuracy by successfully detecting the Delta variant in late 2021, Omicron variants in 2022, and emerging recombinant XBB variants in 2023. Our approach revealed the spatial and temporal dynamics of variants in both urban and rural regions; achieved earlier detection of most variants compared to other computational tools; and uncovered unique co-varying mutation patterns not associated with any known variant. The multivariate nature of our pipeline boosts statistical power and can support accurate and early detection of SARS-CoV-2 variants. This feature offers a unique opportunity for novel variant and pathogen detection, even in the absence of clinical testing.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献