Deep, unbiased and quantitative mass spectrometry-based plasma proteome analysis of individual responses to mRNA COVID-19 vaccine

Author:

Huang TingORCID,Campos Alex Rosa,Wang Jian,Stukalov Alexey,Díaz Ramón,Maurya Svetlana,Motamedchaboki Khatereh,Hornburg Daniel,Saciloto-de-Oliveira Laura R.,Innocente-Alves Camila,Calegari-Alves Yohana P.,Batzoglou Serafim,Beys-da-Silva Walter O.,Santi Lucélia

Abstract

AbstractGlobal campaign against COVID-19 have vaccinated a significant portion of the world population in recent years. Combating the COVID-19 pandemic with mRNA vaccines played a pivotal role in the global immunization effort. However, individual responses to a vaccine are diverse and lead to varying vaccination efficacy. Despite significant progress, a complete understanding of the molecular mechanisms driving the individual immune response to the COVID-19 vaccine remains elusive. To address this gap, we combined a novel nanoparticle-based proteomic workflow with tandem mass tag (TMT) labeling, to quantitatively assess the proteomic changes in a cohort of 12 volunteers following two doses of the Pfizer-BioNTech mRNA COVID-19 vaccine. This optimized protocol seamlessly integrates comprehensive proteome analysis with enhanced throughput by leveraging the enrichment of low-abundant plasma proteins by engineered nanoparticles. Our data demonstrate the ability of this nanoparticle-based workflow to quantify over 3,000 proteins from 48 human plasma samples, providing the deepest view into COVID-19 vaccine-related plasma proteome study. We identified 69 proteins exhibiting a boosted response to the vaccine after the second dose. Additionally, 74 proteins were differentially regulated between seven volunteers, who contracted COVID-19 despite receiving two doses of the vaccine, and the ones who did not contract COVID-19. These findings offer valuable insights into individual variability in response to vaccination, demonstrating the potential of personalized medicine approaches in vaccine development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3