Revisiting the role of the spindle assembly checkpoint in the formation of gross chromosomal rearrangements inSaccharomyces cerevisiae

Author:

Yao Yue,Yin Ziqing,Rosas Bringas Fernando R.ORCID,Boudeman Jonathan,Novarina Daniele,Chang MichaelORCID

Abstract

AbstractMultiple pathways are known to suppress the formation of gross chromosomal rearrangements (GCRs), which can cause human diseases including cancer. In contrast, much less is known about pathways that promote their formation. The spindle assembly checkpoint (SAC), which ensures the proper separation of chromosomes during mitosis, has been reported to promote GCR, possibly by delaying mitosis to allow GCR-inducing DNA repair to occur. Here we show that this conclusion is the result of an experimental artifact arising from the synthetic lethality caused by disruption of the SAC and loss of theCIN8gene, which is often lost in the genetic assay used to select for GCRs. After correcting for this artifact, we find no role of the SAC in promoting GCR.Significance statementA gross chromosomal rearrangement (GCR) is an abnormal structural change of a native chromosome. Examples of GCRs include deletions, duplications, inversions, and translocations. GCRs can lead to genetic diseases such as cancer. A previous study implicated the spindle assembly checkpoint (SAC), which ensures the proper separation of chromosomes during cell division, in facilitating the formation of GCRs. In this study, we show that this is not the case; the SAC does not promote GCR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3