Changes in wing morphology rather than wingbeat kinematics enabled evolutionary miniaturization of hoverflies

Author:

Le Roy CamilleORCID,Tervelde Nina,Engels Thomas,Muijres Florian T.ORCID

Abstract

AbstractDue to physical scaling laws, size greatly affects animal locomotor ability and performance. Whether morphological and kinematic traits always jointly respond to size variation is however poorly known. Here, we examine the relative importance of morphological and kinematic changes in mitigating the consequence of size on aerodynamic force production for weight support in flying insects, focusing on hovering flight of hoverflies (Syrphidae). We compared the flight biomechanics, aerodynamics, and morphology of eight hoverfly species varying from 5 to 100 mg. Our study reveals no effect of body size on wingbeat kinematics among species, suggesting that morphological rather than kinematic changes may compensate for the reduction in weight support associated with an isometric reduction in size. Computational fluid dynamics simulations confirmed that variations in wing morphology, and not kinematics, allow species of different sizes to generate weight support. We specifically show that relatively larger wings and aerodynamically more effective wing shape have evolved in smaller hoverflies, mitigating the reduction in aerodynamic weight support with decreasing size. Altogether, these results suggest that hovering flight of hoverflies underpins highly specialised wingbeat kinematics, which have been conserved throughout evolution; instead, wing morphological adaptations have enabled the evolutionary miniaturisation of hoverflies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3