1. NeuMiss networks: differentiable programming for supervised learning with missing values;Advances in Neural Information Processing Systems,2020
2. van Loon W , Fokkema M , de Rooij M. Imputation of missing values in multi-view data. arXiv preprint arXiv:221014484. 2022.
3. Jarrett D , Cebere BC , Liu T , Curth A , van der Schaar M. Hyperimpute: Generalized iterative imputation with automatic model selection. In: International Conference on Machine Learning. PMLR; 2022. p. 9916–37.
4. Ghalebikesabi S , Cornish R , Holmes C , Kelly L. Deep generative missingness pattern-set mixture models. In: International Conference on Artificial Intelligence and Statistics. PMLR; 2021. p. 3727–35.
5. Characterizing and managing missing structured data in electronic health records: data analysis;JMIR medical informatics,2018