Abstract
AbstractMost studies evaluating symptom-assessment applications (SAAs) rely on a common set of case vignettes that are authored by clinicians and devoid of context, which may be representative of clinical settings but not of situations where patients use SAAs. Assuming the use case of self-triage, we used representative design principles to sample case vignettes from online platforms where patients describe their symptoms to obtain professional advice and compared triage performance of laypeople, SAAs, and Large Language Models (LLMs) on representative versus standard vignettes. We found performance differences in all three groups depending on vignette type (OR = 1.27 to 3.41, p < .001 to .035) and changed rankings of best-performing SAAs and LLMs. Based on these results, we argue that our representative vignette sampling approach (that we call the RepVig Framework) should replace the practice of using a fixed vignette set as standard for SAA evaluation studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献