Machine learning-driven COVID-19 early triage and large-scale testing strategies based on the 2021 Costa Rican Actualidades survey

Author:

Pasquier Carlos,Solís MaikolORCID,Vilchez VivianORCID,Núñez-Corrales SantiagoORCID

Abstract

AbstractThe COVID-19 pandemic underscored the importance of mass testing in mitigating the spread of the virus. This study presents mass testing strategies developed through machine learning models, which predict the risk of COVID-19 contagion based on health determinants. Using the data from the 2021 “Actualidades” survey in Costa Rica, we trained models to classify individuals by contagion risk. After theorize four possible strategies, we evaluated these using Monte Carlo simulations, analyzing the distribution functions for the number of tests, positive cases detected, tests per person, and total costs. Additionally, we introduced the metrics,efficiencyandstock capacity, to assess the performance of different strategies. Our classifier achieved an AUC-ROC of 0.80 and an AUC-PR of 0.59, considering a disease prevalence of 0.26. The fourth strategy, which integrates RT-qPCR, antigen, and RT-LAMP tests, emerged as a cost-effective approach for mass testing, offering insights into scalable and adaptable testing mechanisms for pandemic response.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis

2. The COVID-19 pandemic

3. A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples

4. Brenes Camacho, G. , O.M. Araya Umaña, M.E. González Quesada , and F. Méndez Fonseca . 2013. Estimaciones y proyecciones de población por sexo y edad, 1950-2050. San José, Costa Rica: CCP : INEC, Instituto Nacional de Estadística y Censos.

5. CCSS 2021. Memoria Institucional 2021. Technical report, CCSS, San José, Costa Rica. CDC. 2020, February. Interim Guidance for Antigen Testing for SARS-CoV-2.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3