Enhancement of clinical signs in C3H/HeJ mice vaccinated with a highly immunogenicLeptospiramethyl-accepting chemotaxis protein following challenge

Author:

Barbosa Liana NunesORCID,LIanes Alejandro,Madesh Swetha,Fayne Bryanna Nicole,Brangulis Kalvis,Linn-Peirano Sarah C.,Rajeev SreekumariORCID

Abstract

AbstractLeptospirosis is the most widespread zoonosis and a life-threating disease of humans and animals. Licensed killed whole-cell vaccines are available for animals; however, they do not offer heterologous protection, do not induce a long-term protection, or prevent renal colonization. In this study, we characterized an immunogenicLeptospiramethyl-accepting chemotaxis protein (MCP) identified through a reverse vaccinology approach, predicted its structure, and tested the protective efficacy of a recombinant MCP fragment in the C3H/HeJ mice model. The predicted structure of the full-length MCP revealed an architecture typical for topology class I MCPs. A single dose of MCP vaccine elicited a significant IgG antibody response in immunized mice compared to controls (P< 0.0001), especially the IgG1 and IgG2a subclasses. The vaccination with MCP despite eliciting a robust immune response, did not protect mice from disease and renal colonization. However, survival curves were significantly different between groups, and the MCP vaccinated group developed clinical signs faster than the control group. There were differences in gross and histopathological changes between the MCP vaccinated and control groups. The factors leading to enhanced disease process in vaccinated animals needs further investigation. We speculate that anti-MCP antibodies may block the MCP signaling cascade and may limit chemotaxis, preventingLeptospirafrom reaching its destination, but facilitating its maintenance and replication in the blood stream. Such a phenomenon may exist in endemic areas where humans are highly exposed toLeptospiraantigens, and the presence of antibodies might lead to disease enhancement. The role of this protein inLeptospirapathogenesis should be further evaluated to comprehend the lack of protection and potential exacerbation of the disease process. The absence of immune correlates of protection fromLeptospirainfection is still a major limitation of this field and efforts to gather this knowledge is needed.Author summaryLeptospirosis is one of the underrecognized and neglected diseases of humans and animals. The presence of numerousLeptospiraspecies/serovars infecting a broad range of animal reservoirs, and the resulting environmental contamination, makes control and prevention a cumbersome task. The bacterin-based vaccines available for animals do not offer protection against disease or renal colonization. A broader cross-protective vaccine is essentially needed to preventLeptospirainfections in humans and animals. Here we rationally selected a protein target based on its capacity to be recognized by antibodies of naturally infected animals and designed a recombinant vaccine. Our MCP vaccine was not effective in protecting mice from acute and chronic disease, and likely led to exacerbation of clinical signs in these animals. The development of an effective vaccine would contribute to controlLeptospirainfection in humans and animals and is important especially in low-income regions where leptospirosis is more prevalent and interventions to control the disease are not currently available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3