Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors

Author:

Ozkan Abdulkadir,Padmanabhan Hari K.,Shipman Seth L.,Azim Eiman,Kumar Priyanka,Sadegh CameronORCID,Basak A. Nazli,Macklis Jeffrey D.ORCID

Abstract

Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitryin vivo, or for optimally informative disease modeling and/or therapeutic screeningin vitro, it is important to reproduce the type or subtype of neurons involved. No such appropriatein vitromodels exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factorSox6is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and thatSox6suppresses a latent neurogenic program by repressing inappropriate proneuralNeurog2expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activatingNeurog2, Fezf2, while antagonizingOlig2withVP16:Olig2). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neuronsin vivo. They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employedNeurog2-driven differentiation. Neurons induced byNeurog2instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation forin vitromechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3