Synthetic bacteria with programmed cell targeting and protein injection suppress tumor growthin vivo

Author:

Asensio-Calavia AlejandroORCID,Mañas CarmenORCID,Cabrera-Fisac AlbaORCID,Pico-Sánchez EvaORCID,Seco Elena M.ORCID,Kolodziej Starsha,Leventhal Daniel S.ORCID,Lora José M.ORCID,Álvarez BeatrizORCID,Fernández Luis ÁngelORCID

Abstract

AbstractBacterial living therapeutics (BLTs) hold promise for treating cancer and other human diseases because they can be engineered and transported into the microbiota (e.g., of tumors, gastrointestinal tract) to deliver therapeutic payloads. Current approaches rely on the natural tropism of the bacterial chassis used and trigger the local release of protein cargoes, typically through active extracellular secretion or bacterial lysis. BLTs capable of targeting specific cellular subsets and delivering payloads intracellularly might provide new therapeutic opportunities and improve efficacy while reducing off-target effects. We used synthetic biology to develop BLTs that can deliver defined cargo proteins into the cytoplasm of target cells. We designed a modular synthetic bacterium with programmed adhesion to cells by targeting defined cell surface antigen and armed with an inducible type III secretion system (T3SS) for injection of a protein cargo of interest. As a proof of principle, we programmed synthetic bacteria to recognize the epidermal growth factor receptor (EGFR) and inject the catalytic fragments of the potent adenosine diphosphate-ribosyltransferase toxins ExoA and TccC3. These BLTs demonstrated the ability to trigger robust tumor cell deathin vitro. Intratumoral administration of these synthetic bacteria suppressed tumor growthin vivoand prolonged the survival of treated animals when the tumor cells were recognized by the engineered bacteria. These results demonstrate the potential of programming cell targeting and controlled protein injection for the development of effective and specific BLTs.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3