Analyzing wav2vec embedding in Parkinson’s disease speech: A study on cross-database classification and regression tasks

Author:

Klempir OndrejORCID,Krupicka RadimORCID

Abstract

AbstractAdvancements in deep learning speech representations have facilitated the effective use of extensive datasets comprised of unlabeled speech signals, and have achieved success in modeling tasks associated with Parkinson’s disease (PD) with minimal annotated data. This study focuses on PD non-fine-tuned wav2vec 1.0 architecture. Utilizing features derived from wav2vec embedding, we develop machine learning models tailored for clinically relevant PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics, for instance, modeling the subjects’ age and number of characters per second. The primary aim is to conduct feature importance analysis on both classification and regression tasks, investigating whether latent discrete speech representations in PD are shared across models, particularly for related tasks. The proposed wav2vec-based models were evaluated on PD versus healthy controls using three multi-language-task PD datasets. Results indicated that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database scenarios. Furthermore, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to intelligibility and aging. Subsequent analysis of important features, obtained using scikit-learn feature importance built-in tools and the Shapley additive explanations method, examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. In conclusion, the study proposes wav2vec embedding as a promising step toward a speech-based universal model to assist in the evaluation of PD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3