Exploratory Study on COPD Phenotypes and their Progression: Integrating SPECT and qCT Imaging Analysis

Author:

Li FrankORCID,Zhang Xuan,Comellas Alejandro P.ORCID,Hoffman Eric A.,Graham Michael M.,Lin Ching-Long

Abstract

ABSTRACTBackgroundThe objective of this study is to understand chronic obstructive pulmonary disease (COPD) phenotypes and their progressions by quantifying heterogeneities of lung ventilation from the single photon emission computed tomography (SPECT) images and establishing associations with the quantitative computed tomography (qCT) imaging-based clusters and variables.MethodsEight COPD patients completed a longitudinal study of three visits with intervals of about a year. CT scans of these subjects at residual volume, functional residual capacity, and total lung capacity were taken for all visits. The functional and structural qCT-based variables were derived, and the subjects were classified into the qCT-based clusters. In addition, the SPECT variables were derived to quantify the heterogeneity of lung ventilation. The correlations between the key qCT-based variables and SPECT-based variables were examined.ResultsThe SPECT-based coefficient of variation (CVTotal), a measure of ventilation heterogeneity, showed strong correlations (|r| ≥ 0.7) with the qCT-based functional small airway disease percentage (fSAD%Total) and emphysematous tissue percentage (Emph%Total) in the total lung on cross-sectional data. As for the two-year changes, the SPECT-based maximum tracer concentration (TCmax), a measure of hot spots, exhibited strong negative correlations with fSAD%Total, Emph%Total, average airway diameter in the left upper lobe, and airflow distribution in the middle and lower lobes.ConclusionSmall airway disease is highly associated with the heterogeneity of ventilation in COPD lungs. TCmaxis a more sensitive functional biomarker for COPD progression than CVTotal. Besides fSAD%Totaland Emph%Total, segmental airways narrowing and imbalanced ventilation between upper and lower lobes may contribute to the development of hot spots over time.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3