The Natural Material Evolution and Stage-wise Assembly of Silk Along the Silk Gland

Author:

Brookstein OriORCID,Shimoni Eyal,Eliaz DrorORCID,Dezorella NiliORCID,Biran IdanORCID,Rechav KatyaORCID,Sivan EhudORCID,Kozell AnnaORCID,Shimanovich UlyanaORCID

Abstract

AbstractSilk fibers, with their highly ordered structure and mechanically superb properties, are produced in arthropod glands at minimal energy input and ambient conditions, a remarkable feat yet to be achieved synthetically. Due to the high instability and shear sensitivity of the silk protein feedstock, understanding silk fiber formation has been largely limited toin-vitrostudies of certain gland sections, offering only a fragmented view of this process. Here, we monitor the whole silk feedstock processingin-situ, at the nano- to micron-scales, through imaging its progressive macromolecular assemblies and phase transitions along the entireBombyx morisilkworm silk gland. This is done by combining state-of-the-art microscopy techniques, such as cryogenic sample preparation, fixation, and imaging. Our work reveals that fibroin assembles into micron-sized spherical storage “compartments” in the posterior and middle gland sections, a state that ensures its stability and avoids premature fibrillation. These compartments undergo several structural transformations along the gland and eventually disassemble at the entry to the anterior section, before the silk feedstock spinning begins. The spinning itself commences via a series of structural transitions, from the alignment of protein chains in liquid feedstock, through the formation of several fibrillated nano-structures and, in the final stage, a network of cross-linked nano-bundles, which determines the structure and properties of the final microfiber. Importantly, the length of the anterior section of the silk gland enables such gradual and balanced structural transitions. This direct imaging of silk’s natural formation process can help formulate a template for the transformation of fibrillar proteins into synthetic bio-fibers.DedicationThis work is dedicated to the memory of Dr. Eyal Shimoni, who was a valued colleague and a dear friend. Eyal was a vital part of this research and was essential in shaping its direction. He will be deeply missed for his intellect, mindfulness, creativity, and unwavering dedication to scientific development. Though he is no longer with us, his influence and spirit continue to inspire us in our scientific pursuits. May his passion for discovery and commitment to excellence live on through this work.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3