Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis

Author:

Kocot Joanna,Kosa Peter,Ashida Shinji,Pirjanian Nicolette,Goldbach-Mansky Raphaela,Peterson Karin,Fossati Valentina,Holland Steven M.,Bielekova BibianaORCID

Abstract

AbstractMultiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS (NCT03109288) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA). The clemastine arm was stopped per protocol-defined criteria when 3/9 patients triggered individual safety stopping criteria (χ2p=0.00015 compared to remaining TRAP-MS treatments). Clemastine treated patients had significantly higher treatment-induced disability progression slopes compared to remaining TRAP-MS participants (p=0.0075). Quantification of ∼7000 proteins in CSF samples collected before and after clemastine treatment showed significant increase in purinergic/ATP signaling and pyroptosis cell death. Mechanistic studies showed that clemastine with sub-lytic doses of extracellular ATP activates inflammasome and induces pyroptotic cell death in macrophages. Clemastine with ATP also caused pyroptosis of induced pluripotent stem cell-derived human oligodendrocytes. Antagonist of the purinergic channel P2RX7 that is strongly expressed in oligodendrocytes and myeloid cells, blocked these toxic effects of clemastine. Finally, re-analyses of published snRNAseq studies revealed increased P2RX7 expression and pyroptosis transcriptional signature in microglia and oligodendrocytes in MS brain, especially in chronic active lesions. CSF proteomic pyroptosis score was increased in untreated MS patients, was higher in patients with progressive than relapsing-remitting disease and correlated significantly with rates of MS progression. Thus, pyroptosis is likely first well-characterized mechanism of CNS injury underlying PIRA even outside of clemastine toxicity.One Sentence SummaryClemastine enhanced disability accumulation in patients progressing by non-lesional MS activity by potentiating intrathecal P2RX7 signaling and pyroptosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3