Inherent Bias in Electronic Health Records: A Scoping Review of Sources of Bias

Author:

Perets OrielORCID,Stagno EmanuelaORCID,Yehuda Eyal BenORCID,McNichol MeganORCID,Celi Leo AnthonyORCID,Rappoport NadavORCID,Dorotic MatildaORCID

Abstract

1ABSTRACT1.1ObjectivesBiases inherent in electronic health records (EHRs), and therefore in medical artificial intelligence (AI) models may significantly exacerbate health inequities and challenge the adoption of ethical and responsible AI in healthcare. Biases arise from multiple sources, some of which are not as documented in the literature. Biases are encoded in how the data has been collected and labeled, by implicit and unconscious biases of clinicians, or by the tools used for data processing. These biases and their encoding in healthcare records undermine the reliability of such data and bias clinical judgments and medical outcomes. Moreover, when healthcare records are used to build data-driven solutions, the biases are further exacerbated, resulting in systems that perpetuate biases and induce healthcare disparities. This literature scoping review aims to categorize the main sources of biases inherent in EHRs.1.2MethodsWe queried PubMed and Web of Science on January 19th, 2023, for peer-reviewed sources in English, published between 2016 and 2023, using the PRISMA approach to stepwise scoping of the literature. To select the papers that empirically analyze bias in EHR, from the initial yield of 430 papers, 27 duplicates were removed, and 403 studies were screened for eligibility. 196 articles were removed after the title and abstract screening, and 96 articles were excluded after the full-text review resulting in a final selection of 116 articles.1.3ResultsSystematic categorizations of diverse sources of bias are scarce in the literature, while the effects of separate studies are often convoluted and methodologically contestable. Our categorization of published empirical evidence identified the six main sources of bias: a) bias arising from pastclinical trials; b)data-related biasesarising from missing, incomplete information or poor labeling of data;human-related biasinduced by c) implicit clinician bias, d) referral and admission bias; e) diagnosis or risk disparities bias and finally, (f) biases in machinery and algorithms.1.4ConclusionsMachine learning and data-driven solutions can potentially transform healthcare delivery, but not without limitations. The core inputs in the systems (data and human factors) currently contain several sources of bias that are poorly documented and analyzed for remedies. The current evidence heavily focuses on data-related biases, while other sources are less often analyzed or anecdotal. However, these different sources of biases add to one another exponentially. Therefore, to understand the issues holistically we need to explore these diverse sources of bias. While racial biases in EHR have been often documented, other sources of biases have been less frequently investigated and documented (e.g. gender-related biases, sexual orientation discrimination, socially induced biases, and implicit, often unconscious, human-related cognitive biases). Moreover, some existing studies lack causal evidence, illustrating the different prevalences of disease across groups, which does notper seprove the causality. Our review shows that data-, human- and machine biases are prevalent in healthcare and they significantly impact healthcare outcomes and judgments and exacerbate disparities and differential treatment. Understanding how diverse biases affect AI systems and recommendations is critical. We suggest that researchers and medical personnel should develop safeguards and adopt data-driven solutions with a “bias-in-mind” approach. More empirical evidence is needed to tease out the effects of different sources of bias on health outcomes.CCS ConceptsComputing methodologiesMachine learning;Machine learning approaches; •Applied computingHealth care information systems;Health informatics; •Social and professional topicsPersonal health records;Medical records.ACM Reference FormatOriel Perets, Emanuela Stagno, Eyal Ben Yehuda, Megan McNichol, Leo Anthony Celi, Nadav Rappoport, and Matilda Dorotic. 2024. Inherent Bias in Electronic Health Records: A Scoping Review of Sources of Bias. 1, 1 (April 2024), 24 pages. https://doi.org/XXXXXXX.XXXXXXX

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3