Generalizability of Clinical Prediction Models in Mental Health - Real-World Validation of Machine Learning Models for Depressive Symptom Prediction

Author:

Richter MaikeORCID,Emden Daniel,Leenings Ramona,Winter Nils R.,Mikolajczyk Rafael,Massag Janka,Zwiky Esther,Borgers Tiana,Redlich Ronny,Koutsouleris Nikolaos,Falguera Renata,Thanarajah Sharmili Edwin,Padberg Frank,Reinhard Matthias A.,Back Mitja D.,Morina NexhmedinORCID,Buhlmann Ulrike,Kircher Tilo,Dannlowski Udo, , , ,Hahn Tim,Opel Nils

Abstract

AbstractMental health research faces the challenge of developing machine learning models for clinical decision support. Concerns about the generalizability of such models to real-world populations due to sampling effects and disparities in available data sources are rising. We examined whether harmonized, structured collection of clinical data and stringent measures against overfitting can facilitate the generalization of machine learning models for predicting depressive symptoms across diverse real-world inpatient and outpatient samples. Despite systematic differences between samples, a sparse machine learning model trained on clinical information exhibited strong generalization across diverse real-world samples. These findings highlight the crucial role of standardized routine data collection, grounded in unified ontologies, in the development of generalizable machine learning models in mental health.One-Sentence SummaryGeneralization of sparse machine learning models trained on clinical data is possible for depressive symptom prediction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3