Unifying community-wide whole-brain imaging datasets enables robust automated neuron identification and reveals determinants of neuron positioning inC. elegans

Author:

Sprague Daniel Y.ORCID,Rusch KevinORCID,Dunn Raymond L.ORCID,Borchardt Jackson M.ORCID,Ban Steven,Bubnis GregORCID,Chiu Grace C.,Wen ChentaoORCID,Suzuki Ryoga,Chaudhary ShiveshORCID,Lee Hyun JeeORCID,Yu ZikaiORCID,Dichter BenjaminORCID,Ly RyanORCID,Onami ShuichiORCID,Lu HangORCID,Kimura Koutarou D.ORCID,Yemini EviatarORCID,Kato SaulORCID

Abstract

AbstractWe develop a data harmonization approach forC. elegansvolumetric microscopy data, still or video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online repository called WormID (wormid.org). We use this repository to train three existing automated cell identification algorithms to, for the first time, enable accuracy in neural identification that generalizes across labs, approaching human performance in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. To facilitate communal use of this repository, we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for contribution to the scientific community. This repository provides a growing resource for experimentalists, theorists, and toolmakers to (a) study neuroanatomical organization and neural activity across diverse experimental paradigms, (b) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (c) inform models of neurobiological development and function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3