Demixer: A probabilistic generative model to delineate different strains of a microbial species in a mixed infection sample

Author:

Brintha VP,Narayanan ManikandanORCID

Abstract

AbstractMotivationMulti-drug resistant or hetero-resistant Tuberculosis (TB) hinders the successful treatment of TB. Hetero-resistant TB occurs when multiple strains of the TB-causing bacterium with varying degrees of drug susceptibility are present in an individual. Existing studies predicting the proportion and identity of strains in a mixed infection sample rely on a reference database of known strains. A main challenge then is to identifyde novostrains not present in the reference database, while quantifying the proportion of known strains.ResultsWe present Demixer, a probabilistic generative model that uses a combination of reference-based and reference-free techniques to delineate mixed infection strains in whole genome sequencing (WGS) data. Demixer extends a topic model widely used in text mining to represent known mutations and discover novel ones. Parallelization and other heuristics enabled Demixer to process large datasets like CRyPTIC (Comprehensive Resistance Prediction for Tuberculosis: an International Consortium). In both synthetic and experimental benchmark datasets, our proposed method precisely detected the identity (e.g., 91.67% accuracy on the experimentalin vitrodataset) as well as the proportions of the mixed strains. In real-world applications, Demixer revealed novel high confidence mixed infections (101 out of 1,963 Malawi samples analyzed), and new insights into the global frequency of mixed infection (2% at the most stringent threshold in the CRyPTIC dataset) and its significant association to drug resistance. Our approach is generalizable and hence applicable to any bacterial and viral WGS data.AvailabilityAll code relevant to Demixer is available athttps://github.com/BIRDSgroup/Demixer.Contactnmanik@cse.iitm.ac.inSupplementary informationThe Supplemental Data/Result Files related to Demixer are available at this link:https://drive.google.com/drive/folders/13WFACrn2EpeVTO7533-YwlAGjgF4UH3k?usp=drive_link.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3