Development of D-box peptides to inhibit the Anaphase Promoting Complex/Cyclosome

Author:

Eapen RohanORCID,Okoye CynthiaORCID,Stubbs Christopher,Schimpl MarianneORCID,Tischer Thomas,McCall Eileen,Zacharopoulou MariaORCID,Ferrer Fernando,Barford DavidORCID,Spring DavidORCID,Lindon CathORCID,Phillips Christopher,Itzhaki Laura S.ORCID

Abstract

E3 ubiquitin ligases engage their substrates via ‘degrons’ - short linear motifs typically located within intrinsically disordered regions of substrates. As these enzymes are large, multi-subunit complexes that generally lack natural small-molecule ligands and are hard to drug via conventional means, alternative strategies are needed to target them in diseases, and peptide-based inhibitors derived from degrons represent a promising approach. Here we explore peptide inhibitors of Cdc20, a substrate-recognition subunit and activator of the E3 ubiquitin ligase the anaphase promoting complex/cyclosome (APC/C) that is essential in mitosis and consequently of interest as an anti-cancer target. APC/C engages substrates via degrons that include the ‘Destruction box’ (D-box) motif. We used a rational design approach to construct binders containing unnatural amino acids aimed at better filling a hydrophobic pocket on the surface of Cdc20. We confirmed binding by thermal-shift assays and surface plasmon resonance and determined the structures of a number of the Cdc20-peptide complexes. Using a cellular thermal shift assay we confirmed that the D-box peptides also bind to and stabilise Cdc20 in the cell. We found that the D-box peptides inhibit ubiquitination activity of APC/CCdc20and are more potent than the small molecule inhibitor Apcin. Lastly, these peptides function as portable degrons capable of driving the degradation of a fused fluorescent protein. Interestingly, we find that although inhibitory activity of the peptides correlates with Cdc20-binding affinity, degradation efficacy does not, which may be due to the complex nature of APC/C regulation and effects of degron binding of subunit recruitment and conformational changes. Our study lays the groundwork for the further development of these peptides as molecular therapeutics for blocking APC/C as well as potentially also for harnessing APC/C for targeted protein degradation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3