Enhanced network synchronization connectivity following transcranial direct current stimulation (tDCS) in bipolar depression: effects on EEG oscillations and deep learning-based predictors of clinical remission

Author:

Xiao WenyiORCID,Moncy Jijomon C.,Ghazi-Noori Ali-Reza,Woodham Rachel D.,Rezaei Hakimeh,Bramon Elvira,Ritter Philipp,Bauer Michael,Young Allan H.ORCID,Fu Cynthia H.Y.ORCID

Abstract

AbstractAimTo investigate oscillatory networks in bipolar depression, effects of a home-based tDCS treatment protocol, and potential predictors of clinical response.Methods20 participants (14 women) with bipolar disorder, mean age 50.75 ± 10.46 years, in a depressive episode of severe severity (mean Montgomery-Åsberg Rating Scale (MADRS) score 24.60 ± 2.87) received home-based transcranial direct current stimulation (tDCS) treatment for 6 weeks. Clinical remission defined as MADRS score < 10. Resting-state EEG data were acquired at baseline, prior to the start of treatment, and at the end of treatment, using a portable 4-channel EEG device (electrode positions: AF7, AF8, TP9, TP10). EEG band power was extracted for each electrode and phase locking value (PLV) was computed as a functional connectivity measure of phase synchronization. Deep learning was applied to pre-treatment PLV features to examine potential predictors of clinical remission.ResultsFollowing treatment, 11 participants (9 women) attained clinical remission. A significant positive correlation was observed with improvements in depressive symptoms and delta band PLV in frontal and temporoparietal regional channel pairs. An interaction effect in network synchronisation was observed in beta band PLV in temporoparietal regions, in which participants who attained clinical remission showed increased synchronisation following tDCS treatment, which was decreased in participants who did not achieve clinical remission. Main effects of clinical remission status were observed in several PLV bands: clinical remission following tDCS treatment was associated with increased PLV in frontal and temporal regions and in several frequency bands, including delta, theta, alpha and beta, as compared to participants who did not achieve clinical remission. The highest deep learning prediction accuracy 69.45% (sensitivity 71.68%, specificity 66.72%) was obtained from PLV features combined from theta, beta, and gamma bands.ConclusionstDCS treatment enhances network synchronisation, potentially increasing inhibitory control, which underscores improvement in depressive symptoms. Baseline EEG-based measures might aid predicting clinical response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3