Author:
Lee Vincent Kyu,Reynolds William T.,Wallace Julia,Beluk Nancy,Badaly Daryaneh,Lo Cecilia W,Ceschin Rafael,Panigrahy Ashok
Abstract
ABSTRACTCerebrospinal fluid (CSF) circulation has recently been shown to be important in nutrient distribution, waste removal, and neurogenesis. Increased CSF volumes are frequently observed in congenital heart disease (CHD) and are associated with neurodevelopmental deficits. This suggests prolonged perturbation to the CSF system and possible interference to its homeostatic function, which may contribute to the neurodevelopmental deficits in CHD. CSF flow has yet to be studied in CHD patients, but the pulsatile flow of CSF throughout the brain is driven mainly by cardiopulmonary circulation. Given the underlying heart defects in CHD, the cardiopulmonary circulatory mechanisms in CHD might be impaired with resultant perturbation on the CSF circulation. In this study, we determine whether CSF flow, using MRI measurements of static and dynamic pulsatile flow, is abnormal in youths with CHD compared to healthy controls in relation to executive cognitive function. CSF flow measurements were obtained on a total of 58 child and young adult participants (CHD=20, healthy controls = 38). The CSF flow was measured across the lumen of the Aqueduct of Sylvius using cardiac-gated phase-contrast MRI at 3.0T. Static pulsatility was characterized as anterograde and retrograde peak velocities, mean velocity, velocity variance measurements, and dynamic pulsatility calculated as each participant’s CSF flow deviation from the study cohort’s consensus flow measured with root mean squared deviation (RMSD) were obtained. The participants had neurocognitive assessments for executive function with focus on inhibition, cognitive flexibility, and working memory domains. The CHD group demonstrated greater dynamic pulsatility (higher overall flow RMSD over the entire CSF flow cycle) compared to controls (p=0.0353), with no difference detected in static pulsatility measures. However, lower static CSF flow pulsatility (anterograde peak velocity: p=0.0323) and lower dynamic CSF flow pulsatility (RMSD: p=0.0181) predicted poor inhibitory executive function outcome. Taken together, while the whole CHD group exhibited higher dynamic CSF flow pulsatility compared to controls, the subset of CHD subjects with relatively reduced static and dynamic CSF flow pulsatility had the worst executive functioning, specifically the inhibition domain. These findings suggest that altered CSF flow pulsatility may be central to not only brain compensatory mechanisms but can also drive cognitive impairment in CHD. Further studies are needed to investigate possible mechanistic etiologies of aberrant CSF pulsatility (i.e. primary cardiac hemodynamic disturbances, intrinsic brain vascular stiffness, altered visco-elastic properties of tissue, or glial-lymphatic disturbances), which can result in acquired small vessel brain injury (including microbleeds and white matter hyperintensities).
Publisher
Cold Spring Harbor Laboratory