Abstract
AbstractA major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing ’double-peak’ laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
Publisher
Cold Spring Harbor Laboratory