Lifting the curse from high dimensional data: Automated projection pursuit clustering for the variety of biological data modalities

Author:

Simpson Claire,Tabatsky Evgeniy,Rahil Zainab,Eddins Devon J.,Tkachev Sasha,Georgescauld Florian,Papalegis Derek,Culka Martin,Levy Tyler,Gregoretti Ivan,Chernyshev Andrei,Koeppen Hartmut,Walther Guenther,Ghosn Eliver E. B.,Orlova Darya

Abstract

AbstractUnsupervised clustering is a powerful machine-learning technique widely used to analyze high-dimensional biological data. It plays a crucial role in uncovering patterns, structure, and inherent relationships within complex datasets without relying on predefined labels. In the context of biology, high-dimensional data may include transcriptomics, proteomics, and a variety of single-cell omics data. Most existing clustering algorithms operate directly in the high-dimensional space, and their performance may be negatively affected by the phenomenon known as the curse of dimensionality. Here, we show an alternative clustering approach that alleviates the curse by sequentially projecting high-dimensional data into a low-dimensional representation. We validated the effectiveness of our approach, named APP, across various biological data modalities, including flow and mass cytometry data, scRNA-seq, multiplex imaging data, and T-cell receptor repertoire data. APP efficiently recapitulated experimentally validated cell-type definitions and revealed new biologically meaningful patterns.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. A Projection Pursuit Algorithm for Exploratory Data Analysis

2. Friedman, J. H. & Stuetzle, W. (1982). Projection pursuit methods for data analysis, in Modern Data Analysis, R.L., Launer & A.F., Siegel , eds, Academic Press (pp. 123–147).

3. Hastie, T. , Tibshirani, R. , & Friedman, J . (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Stanford University Press.

4. Bellman, R. E. & Rand Corporation (1957). Dynamic programming. Princeton University Press (pp. ix.) ISBN 978-0-691-07951-6.

5. Bellman, R. E. (1961). Adaptive control processes: a guided tour. Princeton University Press. ISBN 9780691079011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3