In Silico Generation of Gene Expression profiles using Diffusion Models

Author:

Lacan AliceORCID,André RomainORCID,Sebag MicheleORCID,Hanczar BlaiseORCID

Abstract

AbstractMotivationRNA-seq data is used for precision medicine (e.g., cancer predictions), which benefits from deep learning approaches to analyze complex gene expression data. However, transcriptomics datasets often have few samples compared to deep learning standards. Synthetic data generation is thus being explored to address this data scarcity. So far, only deep generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have been used for this aim. Considering the recent success of diffusion models (DM) in image generation, we propose the first generation pipeline that leverages the power of said diffusion models.ResultsThis paper presents two state-of-the-art diffusion models (DDPM and DDIM) and achieves their adaptation in the transcriptomics field. DM-generated data of L1000 landmark genes show better predictive performance over TCGA and GTEx datasets. We also compare linear and nonlinear reconstruction methods to recover the complete transcriptome. Results show that such reconstruction methods can boost the performances of diffusion models, as well as VAEs and GANs. Overall, the extensive comparison of various generative models using data quality indicators shows that diffusion models perform best and second-best, making them promising synthetic transcriptomics generators.Availability and implementationData processing and full code available at:https://forge.ibisc.univevry.fr/alacan/rna-diffusion.gitContactalice.lacan@univ-evry.frSupplementary informationSupplementary data are available atBioRxivonline.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Akiba, T. et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In KDD.

2. Gene expression inference with deep learning

3. Dhariwal, P. and Nichol, A. Q. (2021). Diffusion models beat GANs on image synthesis. In NeurIPS, volume 34.

4. Goodfellow, I. et al. (2014). Generative adversarial nets. In NeurIPS, volume 27.

5. Heusel, M. et al. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, volume 30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3