Fiberscopic Pattern Removal for Optimal Coverage in 3D Bladder Reconstructions of Fiberscope Cystoscopy Videos

Author:

Eimen RachelORCID,Krzyzanowska HalinaORCID,Scarpato Kristen R.,Bowden Audrey K.ORCID

Abstract

AbstractPurposeIn the current clinical standard of care, cystoscopic video is not routinely saved because it is cumbersome to review. Instead, clinicians rely on brief procedure notes and still frames to manage bladder pathology. Preserving discarded data via 3D reconstructions, which are convenient to review, has the potential to improve patient care. However, many clinical videos are collected by fiberscopes, which are lower cost but induce a pattern on frames that inhibits 3D reconstruction. The aim of this study is to remove the honeycomb-like pattern present in fiberscope-based cystoscopy videos to improve the quality of 3D bladder reconstructions.ApproachThis study introduces a novel algorithm that applies a notch filtering mask in the Fourier domain to remove the honeycomb-like pattern from clinical cystoscopy videos collected by fiberscope as a preprocessing step to 3D reconstruction. We produce 3D reconstructions with the video before and after removing the pattern, which we compare with a novel metric termed the area of reconstruction coverage (ARC), defined as the surface area (in pixels) of the reconstructed bladder. All statistical analyses use paired t-tests.ResultsPreprocessing using our method for pattern removal enabled reconstruction for all (n = 5) cystoscopy videos included in the study and produced a statistically significant increase in bladder coverage (p = 0.018).ConclusionsThis algorithm for pattern removal increases bladder coverage in 3D reconstructions and automates mask generation and application, which could aid implementation in time-starved clinical environments. The creation and use of 3D reconstructions can improve documentation of cystoscopic findings for future surgical navigation, thus improving patient treatment and outcomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3