Early prediction ofMycobacterium tuberculosistransmission clusters using supervised learning models

Author:

Gharamaleki Omid Gheysar,Colijn CarolineORCID,Sekirov InnaORCID,Johnston James CORCID,Sobkowiak BenjaminORCID

Abstract

AbstractIdentifying individuals with tuberculosis with a high risk of onward transmission can guide disease prevention and public health strategies. Here, we train classification models to predict the first sampled isolates inMycobacterium tuberculosistransmission clusters from demographic and disease data. We find that supervised learning models, in particular balanced random forests, can be used to develop predictive models that discriminate between individuals with TB that are more likely to form transmission clusters and individuals that are likely not to transmit further, with good model performance and AUCs of ≥ 0.75. We also identified the most important patient and disease characteristics in the best performing classification model, including patient demographics, site of infection, TB lineage, and age at diagnosis. This framework can be used to develop predictive tools for the early assessment of a patient’s transmission risk to prioritise individuals for enhanced follow-up with the aim of reducing further transmission.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. World Health Organization. Global tuberculosis report 2023. Geneva : World Health Organization; 2023 (2023).

2. The End Strategy TB;World Health Organization;End TB Strateg,2017

3. Contact investigation for tuberculosis: a systematic review and meta-analysis

4. Chitwood, M. H. , et al. The recent rapid expansion of multidrug resistant strains of Mycobacterium tuberculosis Ural lineage 4 . 2 in the Republic of Moldova. medRxiv (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3