Stage-aware Brain Graph Learning for Alzheimer’s Disease

Author:

Peng CiyuanORCID,Liu Mujie,Meng Chenxuan,Xue Sha,Keogh Kathleen,Xia FengORCID

Abstract

AbstractCurrent machine learning-based Alzheimer’s disease (AD) diagnosis methods fail to explore the distinctive brain patterns across different AD stages, lacking the ability to trace the trajectory of AD progression. This limitation can lead to an oversight of the pathological mechanisms of AD and suboptimal performance in AD diagnosis. To overcome this challenge, this paper proposes a novel stage-aware brain graph learning model. Particularly, we analyze the different brain patterns of each AD stage in terms of stage-specific brain graphs. We design a Stage Feature-enhanced Graph Contrastive Learning method, named SF-GCL, utilizing specific features within each AD stage to perform graph augmentation, thereby effectively capturing differences between stages. Significantly, this study unveils the specific brain patterns corresponding to each AD stage, showing great potential in tracing the trajectory of brain degeneration. Experimental results on a real-world dataset demonstrate the superiority of our model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3