GraSP Gene Targets to Hierarchically Infer Sub-Classes with CuttleNet

Author:

Budoff Samuel A.ORCID,Poleg-Polsky AlonORCID

Abstract

AbstractThis paper introduces a machine learning approach, GraSP, for retinal cell classification that addresses key challenges in spatial biology, alongside a novel neural network architecture, CuttleNet, tailored for class and subclass inference with incomplete datasets. We propose an innovative, unbiased gene selection method that utilizes simple neural networks for each target cell subclass, such thatGradientSelectedPredictors (GraSP) corresponding to gene importance are found for each. This approach significantly outperforms traditional machine learning techniques and expert-selected gene targets, reducing the necessary genes for classification from over 18k to 300 within the murine retina. Such reduction is crucial for advancing spatial biology, particularly in mapping retinal cell subclasses. Furthermore, our hierarchical architecture inspired by the organization of the cephalopod nervous system, CuttleNet, adeptly handles the pervasive issue of missing data in disjointed single-cell RNA sequencing datasets. CuttleNet operates by first classifying cell classes using consistently measured genes, then dynamically routing to subclass-specific subnetworks that leverage all available data for subclass classification. CuttleNet establishes a new standard in handling systematically missing data, offering substantial improvements over existing models in our targeted application.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3