A Computational Framework for Understanding the Impact of Prior Experiences on Pain Perception and Neuropathic Pain

Author:

Ramne MalinORCID,Sensinger Jon

Abstract

AbstractPain perception is influenced not only by sensory input from afferent neurons but also by cognitive factors such as prior expectations. It has been suggested that overly precise priors may be a key contributing factor to chronic pain states such as neuropathic pain. However, it remains an open question how overly precise priors in favor of pain might arise. Here, we first verify that a Bayesian approach can describe how statistical integration of prior expectations and sensory input results in pain phenomena such as placebo hypoalgesia, nocebo hyperalgesia, chronic pain, and spontaneous neuropathic pain. Our results indicate that the value of the prior, which is determined by generative model parameters, may be a key contributor to these phenomena. Next, we apply a hierarchical Bayesian approach to update the parameters of the generative model based on the difference between the predicted and the perceived pain, to reflect that people integrate prior experiences in their future expectations. In contrast with simpler approaches, this hierarchical model structure is able to show for placebo hypoalgesia and nocebo hyperalgesia how these phenomena can arise from prior experiences in the form of a classical conditioning procedure. We also demonstrate the phenomenon of offset analgesia, in which a disproportionally large pain decrease is obtained following a minor reduction in noxious stimulus intensity. Finally, we turn to simulations of neuropathic pain, where our hierarchical model corroborates that persistent non-neuropathic pain is a risk factor for developing neuropathic pain following denervation, and additionally offers an interesting prediction that complete absence of informative painful experiences could be a similar risk factor. Taken together, these results provide insight to how prior experiences may contribute to pain perception, in both experimental and neuropathic pain, which in turn might be informative for improving strategies of pain prevention and relief.Author summaryTo efficiently navigate the world and avoid harmful situations, it is beneficial to learn from prior pain experiences. This learning process typically results in certain contexts being associated with an expected level of pain, which subsequently influences pain perception. While this process of pain anticipation has evolved as a mechanism for avoiding harm, recent research indicates overly precise expectations of pain may in fact contribute to certain chronic pain conditions, in which pain persists even after tissue damage has healed, or even arises without any initiating injury. However, it remains an open questionhowprior experiences contribute to such overly precise expectations of pain. Here, we mathematically model the pain-learning-process. Our model successfully describes several counterintuitive but well-documented pain phenomena. We also make predictions of how prior experiences may contribute the perception of pain and how the same learning process could be leveraged to improve strategies of pain prevention and relief.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3