Multiscale modelling of neuronal dynamics in hippocampus CA1

Author:

Tesler Federico,Lorenzi Roberta Maria,Ponzi Adam,Castellato Claudia,Palesi Fulvia,Gandolfi Daniela,Gandini Wheeler Kingshott Claudia A.M.,Mapelli Jonathan,D’Angelo Egidio,Migliore Michele,Destexhe Alain

Abstract

AbstractThe development of biologically realistic models of brain microcircuits and regions is currently a very relevant topic in computational neuroscience. From basic research to clinical applications, there is an increasing demand for accurate models that incorporate local cellular and network specificities, able to capture a broad range of dynamics and functions associated with given brain regions. One of the main challenges of these models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. One novel approach to this problem is the use of mean-field models of neuronal activity to build large-scale simulations. This provides an effective solution to the passage between scales with relatively low computational demands, which is achieved by a drastic reduction in the dimensionality of the system. In this paper we introduce a multiscale modelling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modelling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. To develop the mean-field model we make use of a recently introduced formalism based on a bottom-up approach that is easily applicable to different neuronal models and cell types. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. In addition, we show an example of the implementation of our model to study a stimulus propagation at the macro-scale, and we compare the results obtained from our model with the corresponding spiking network model of the whole CA1 area.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. The Blue Brain Project

2. A realistic morpho-anatomical connection strategy for modelling full-scale point-neuron microcircuits;Scientific Reports,2022

3. The microcircuits of striatum in silico

4. The virtual brain: a simulator of primate brain network dynamics;Frontiers in neuroinformatics,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3