Strategies for motion- and respiration-robust estimation of fMRI intrinsic neural timescales

Author:

Goldberg Andrew,Rosario Isabella,Power JonathanORCID,Horga GuillermoORCID,Wengler KennethORCID

Abstract

ABSTRACTIntrinsic neural timescale (INT) is a resting-state fMRI (rs-fMRI) measure that reflects the time window of neural integration within a brain region. Despite the potential relevance of INT to cognition, brain organization, and neuropsychiatric illness, the influences of physiological artifacts on INT have not been systematically considered. Two artifacts, head motion and respiration, pose serious issues in rs-fMRI studies. Here, we described their impact on INT estimation and tested the ability of two denoising strategies for mitigating these artifacts, high-motion frame censoring and global signal regression (GSR). We used a subset of the HCP Young Adult dataset with runs annotated for breathing patterns (Lynch et al., 2020) and at least one “clean” (reference) run that had minimal head motion and no respiration artifacts; other runs from the same participants (n = 46) were labeled as “non-clean.” We found that non-clean runs exhibited brain-wide increases in INT compared to their respective clean runs and the magnitude of error in INT between non-clean and clean runs correlated with the amount of head motion. Importantly, effect sizes were comparable to INT effects reported in the clinical literature. GSR and high-motion frame censoring improved the similarity between INT maps from non-clean runs and their respective clean run. Using a pseudo-random frame-censoring approach, there was a relationship between the amount of censored frames and both the mean INT and mean error, suggesting that frame censoring itself biases INT estimation. A group-level correction procedure reduced this bias and improved similarity between non-clean runs and their respective clean run. Based on our findings, we offer recommendations for rs-fMRI INT studies, which include implementing GSR and high-motion frame censoring with Lomb-Scargle interpolation of censored data, and performing group-level correction of the bias introduced by frame censoring.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3