Simulation-based dosimetry of transcranial and intranasal photobiomodulation of the human brain: the roles of wavelength, power density and skin colour

Author:

Van Lankveld Hannah,Mai Anh Q.,Lim Lew,Hosseinkhah Nazanin,Cassano Paolo,Jean Chen J.ORCID

Abstract

AbstractPhotobiomodulation (PBM) is a novel technique that is actively studied for neuromodulation. However, despite the many in vivo studies, the stimulation protocols for PBM vary amongst studies, and the current understanding of neuromodulation via PBM is limited in terms of the extent of light penetration into the brain and its dosage dependence. Moreover, as near-infrared light can be absorbed by melanin in the skin, skin tone is a highly relevant but under-studied variable of interest. In this study, to address these gaps, we use Monte Carlo simulations (with MCX) of a single laser source for transcranial (tPBM) and intranasal (iPBM, nostril position) irradiated on a healthy human brain model. We investigate wavelengths of 670, 810 and 1064 nm in combination with light (“Caucasian”), medium (“Asian”) and dark (“African”) skin tones. Our simulations show that a maximum of 15% of the incidental energy for tPBM and 1% for iPBM reaches the cortex from the light source at the skin level. The rostral dorsal prefrontal cortex in tPBM and the ventromedial prefrontal cortex for iPBM accumulates the highest highest light energy, respectively for both wavelengths. Specifically, the 810 nm wavelength for tPBM and 1064 nm wavelength for iPBM produced the highest energy accumulation. Optical power density was found to be linearly correlated with energy. Moreover, we show that “Caucasian” skin allows the accumulation of higher light energy than other two skin colours. This study is the first to account for skin colour as a PBM dosing consideration, and provides evidence for hypothesis generation in in vivo studies of PBM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3