Pharmacologic and genetic evidence converge on mechanisms of psychotic illness

Author:

Fennessy Brian,Cotter Liam,Simons Nicole W.,Liharska Lora E.,Nadkarni Girish N.,Ruderfer Douglas M.,Charney Alexander W.ORCID

Abstract

AbstractIdiopathic and substance-induced forms of psychotic illness afflict millions of people worldwide, and it is largely unknown whether these two forms emerge through the same molecular mechanisms. Though genetic studies have implicated thousands of genes in idiopathic psychotic illnesses (e.g., schizophrenia), consensus is lacking regarding which of these genes are most likely to treat psychotic illness when modulated pharmacologically and, as a result, antipsychotic medications targeting these genes have yet to be developed. Previous studies suggest that one way to determine if a candidate target gene is likely to lead to an effective treatment for a given illness is if the gene is implicated by multiple lines of evidence (e.g., genetic, pharmacologic). Here, pharmacologic, genetic, and clinical data were leveraged to determine if the idiopathic and substance-induced forms of psychotic illness are related to one another through a common set of genes. A set of medications that cause psychotic illness as a side effect (“propsychotics”) were identified by analyzing 15 million medication side effects reports from over 100 countries. There was a significant overlap of target genes among propsychotics and antipsychotics and for many of the shared target genes propsychotics act through a mechanism that was qualitatively the opposite of the mechanism through which antipsychotics act (e.g., activation vs. inhibition). Propsychotic and antipsychotic target genes were significantly enriched for genes implicated in schizophrenia by rare loss-of-function genetic variation but not for genes implicated in schizophrenia by common genetic variation. Only one gene –GRIN2A, encoding the GluN2A subunit of the NMDA glutamate receptor – was implicated in psychotic illness by propsychotics, rare loss-of-function genetic variation, and common genetic variation. Mining genetic data from a diverse cohort of 30,000 adults treated in a New York City health system, a carrier of a rare loss-of-function variant inGRIN2Awith severe psychotic illness was identified with a clinical course notable for psychotic symptoms and cognitive deficits that are not targeted by current antipsychotics. Altogether, this report shows how integrating pharmacologic, genetic, and clinical data from large cohorts can prioritize target genes for novel drug development and align the prioritized targets with specific clinical presentations.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Association, A. P. Diagnostic and statistical manual of mental disorders, (DSM-5®). (American Psychiatric Pub, 2013).

2. The Heterogeneity of the Long-Term Course of Schizophrenia

3. Lifespan evolution of neurocognitive impairment in schizophrenia - A narrative review

4. Occurrence and co-occurrence of hallucinations by modality in schizophrenia-spectrum disorders

5. World Health, O. WHO model list of essential medicines, 20th list (March 2017, amended August 2017). (World Health Organization, Geneva, 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3