Decreased brain pH correlated with progression of Alzheimer’s disease neuropathology: a systematic review and meta-analyses of postmortem studies

Author:

Hagihara HideoORCID,Miyakawa TsuyoshiORCID

Abstract

AbstractBackgroundAltered brain energy metabolism is implicated in Alzheimer’s disease (AD). Limited and conflicting studies on brain pH changes, indicative of metabolic alterations associated with neural activity, warrant a comprehensive investigation into their relevance in this neurodegenerative condition. Furthermore, the relationship between these pH changes and established AD neuropathological evaluations, such as Braak staging, remains unexplored.MethodsWe conducted quantitative meta-analyses on postmortem brain and cerebrospinal fluid pH in patients with AD and non-AD controls, using publicly available demographic data. We collected raw pH data from studies in the NCBI GEO, PubMed, and Google Scholar databases.ResultsOur analysis of 17 datasets (457 patients and 315 controls) using a random-effects model showed a significant decrease in brain and cerebrospinal fluid pH in patients compared to controls (Hedges’g= –0.54,p< 0.0001). This decrease remained significant after considering postmortem interval, age at death, and sex. Notably, pH levels were negatively correlated with Braak stage, indicated by the random-effects model of correlation coefficients from 15 datasets (292 patients and 159 controls) (adjustedr= –0.26,p< 0.0001). Furthermore, brain pH enhanced the discriminative power of theAPOEε4 allele, the most prevalent risk gene for AD, in distinguishing patients from controls in a meta-analysis of four combined datasets (95 patients and 87 controls).ConclusionsThe significant decrease in brain pH in AD underlines its potential role in disease progression and diagnosis. This decrease, potentially reflecting neural hyperexcitation, could enhance our understanding of neurodegenerative pathology and aid in developing diagnostic strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3