A deep learning pipeline for time-lapse camera monitoring of insects and their floral environments

Author:

Bjerge KimORCID,Karstoft HenrikORCID,Mann Hjalte M. R.ORCID,Høye Toke T.ORCID

Abstract

AbstractArthropods, including insects, represent the most diverse group and contribute significantly to animal biomass. Automatic monitoring of insects and other arthropods enables quick and efficient observation and management of ecologically and economically important targets such as pollinators, natural enemies, disease vectors, and agricultural pests. The integration of cameras and computer vision facilitates innovative monitoring approaches for agriculture, ecology, entomology, evolution, and biodiversity. However, studying insects and their interactions with flowers and vegetation in natural environments remains challenging, even with automated camera monitoring.This paper presents a comprehensive methodology to monitor abundance and diversity of arthropods in the wild and to quantify floral cover as a key resource. We apply the methods across more than 10 million images recorded over two years using 48 insect camera traps placed in three main habitat types. The cameras monitor arthropods, including insect visits, on a specific mix ofSedumplant species with white, yellow and red/pink colored of flowers. The proposed deep-learning pipeline estimates flower cover and detects and classifies arthropod taxa from time-lapse recordings. However, the flower cover serves only as an estimate to correlate insect activity with the flowering plants. Color and semantic segmentation with DeepLabv3 are combined to estimate the percent cover of flowers of different colors. Arthropod detection incorporates motion-informed enhanced images and object detection with You-Only-Look-Once (YOLO), followed by filtering stationary objects to minimize double counting of non-moving animals and erroneous background detections. This filtering approach has been demonstrated to significantly decrease the incidence of false positives, since arthropods, occur in less than 3% of the captured images.The final step involves grouping arthropods into 19 taxonomic classes. Seven state-of-the-art models were trained and validated, achievingF1-scores ranging from 0.81 to 0.89 in classification of arthropods. Among these, the final selected model, EfficientNetB4, achieved an 80% average precision on randomly selected samples when applied to the complete pipeline, which includes detection, filtering, and classification of arthropod images collected in 2021. As expected during the beginning and end of the season, reduced flower cover correlates with a noticeable drop in arthropod detections. The proposed method offers a cost-effective approach to monitoring diverse arthropod taxa and flower cover in natural environments using time-lapse camera recordings.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3