Evolutionary insights into the emergence of virulentLeptospiraspirochetes

Author:

Giraud-Gatineau Alexandre,Nieves Cecilia,Harrison Luke B.,Benaroudj Nadia,Veyrier Frédéric J.,Picardeau MathieuORCID

Abstract

ABSTRACTPathogenicLeptospiraare spirochete bacteria which cause leptospirosis, a re-emerging zoonotic disease of global importance. Here, we use a recently described lineage of environmental-adapted leptospires, which are evolutionarily the closest relatives of the highly virulentLeptospiraspecies, to explore the key phenotypic traits and genetic determinants ofLeptospiravirulence. Through a comprehensive approach integrating phylogenomic comparisons within vitroandin vivophenotyping studies, we show that the evolution towards pathogenicity is associated with both a decrease of the ability to survive in the environment and the acquisition of strategies that enable successful host colonization. This includes the evasion of the human complement system and the adaptations to avoid activation of the innate immune cells. Moreover, our analysis reveals specific genetic determinants that have undergone positive selection during the course of evolution inLeptospira, contributing directly to virulence and host adaptation as demonstrated by gain-of-function and knock-down studies. Taken together, our findings define a new vision onLeptospirapathogenicity, identifying virulence attributes associated with clinically relevant species, and provide insights into the evolution and emergence of these life-threatening pathogens.AUTHOR SUMMARYLeptospirais a highly heterogeneous bacterial genus and leptospires are ubiquitous bacteria found as free-living saprophytes or as pathogens that can cause disseminated infections, from asymptomatic carriage in rats to lethal acute infection in both humans and animals. Leptospirosis is thus causing over one million cases and nearly 60,000 deaths annually. Despite leptospirosis being a re-emerging zoonosis, little is known about the ability of the etiologic agent to adapt to different hosts and cause disease. Here, combining genome analysis and phenotyping studies of representative species and mutant strains, we show that only a small group of species have the ability to evade the host immune system and cause disease. In addition, our findings provide key insight into the emergence of pathogens from a saprophytic ancestor through events of gene gain and genome reduction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3