Using muscle-tendon load limits to assess unphysiological musculoskeletal model deformation and Hill-type muscle parameter choice

Author:

Nölle Lennart V.ORCID,Wochner IsabellORCID,Hammer MariaORCID,Schmitt SynORCID

Abstract

AbstractMusculoskeletal simulations are a useful tool for improving our understanding of the human body. However, the physiological validity of predicted kinematics and forces is highly dependent upon the correct calibration of muscle parameters and the structural integrity of a model’s internal skeletal structure. In this study, we show how ill-tuned muscle parameters and unphysiological deformations of a model’s skeletal structure can be detected by using muscle elements as sensors with which modelling and parameterization inconsistencies can be identified through muscle and tendon strain injury assessment.To illustrate our approach, two modelling issues were recreated. First, a model repositioning simulation using the THUMS AM50 occupant model version 5.03 was performed to show how internal model deformations can occur during a change of model posture. Second, the muscle material parameters of the OpenSim gait2354 model were varied to illustrate how unphysiological muscle forces can arise if material parameters are inadequately calibrated. The simulations were assessed for muscle and tendon strain injuries using previously published injury criteria and a newly developed method to determine tendon strain injury threshold values.Muscle strain injuries in the left and rightmusculus pronator tereswere detected during the model repositioning. This straining was caused by an unphysiologically large gap (12.92 mm) that had formed in the elbow joint. Similarly, muscle and tendon strain injuries were detected in the modified right-handmusculus gastrocnemius medialisof the gait2354 model where an unphysiological reduction of the tendon slack length introduced large pre-strain of the muscle-tendon-unit.The results of this work show that the proposed method can quantify the internal distortion behaviour of musculoskeletal human body models and the validity of Hill-type muscle parameter choice via strain injury assessment. Furthermore, we highlight possible actions to avoid the presented issues and inconsistencies in literature data concerning the material characteristics of human tendons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3