Post-mortem evidence for a reciprocal relationship between genomic DNA damage and alpha-synuclein pathology in dementia with Lewy bodies

Author:

Koss David J.ORCID,Todd Olivia,Menon Hariharan,Anderson Zoe,Yang Tamsin,Attems Johannes,LeBeau Fiona E.,Erskine Daniel,Outeiro Tiago F.

Abstract

AbstractDNA damage and DNA damage repair (DDR) dysfunction are insults with broad implications on cellular physiology, including in proteostasis, and have been recently implicated in many neurodegenerative diseases. Alpha-synuclein (aSyn), a pre-synaptic and nuclear protein associated with neurodegenerative disorders known as synucleinopathies, has been implicated in DNA double strand break (DSB) repair function. Consistently, DSB induction has been demonstrated in cell and animal models of synucleinopathy. Nevertheless, the types of DNA damage and the contribution of DNA damage towards Lewy body (LB) formation in synucleinopathies are unknown. Here, we demonstrate the increase of DSB in neuronal and non-neuronal cellular populations of post-mortem temporal cortex tissue from dementia with Lewy body (DLB) patients and demonstrate increases in DSBs early at a presymptomatic age of aSyn transgenic mice. Strikingly, in postmortem DLB tissue, DNA damage-derived ectopic cytoplasmic genomic material (eCGM) was evident within the majority of LBs examined. The observed cellular pathology was consistent with nucleoproteasomal upregulation of associated DNA damage repair proteins, particularly in base excision repair and DSB repair pathways. Collectively our study demonstrates the early occurrence of DNA damage and associated nucleoproteasomal changes in response to nuclear aSyn pathology. Furthermore, the data suggests a potential involvement for DNA damage derived eCGM for the facilitation of cytoplasmic aSyn aggregates. Ultimately, uncovering pathological mechanisms underlying DNA damage in DLB sheds light into novel disease mechanisms and opens novel possibilities for diagnosing and treating synucleinopathies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3