Fibre tracing in biomedical images: An objective comparison between seven algorithms

Author:

Arafat YoussefORCID,Cuesta-Apausa Cristina,Castellano Esther,Reyes-Aldasoro Constantino CarlosORCID

Abstract

AbstractObtaining the traces and the characteristics of elongated structures is an important task in computer vision pipelines. In biomedical applications, the analysis of traces of vasculature, nerves or fibres of the extracellular matrix can help characterise processes like angiogenesis or the effect of a certain treatment. This paper presents an objective comparison of six existing methodologies (Edge detection, CT Fire, Scale Space, Twombli, U-Net and Graph Based) and one new approach calledTrace Ridgesto trace biomedical images with fibre-like structures. Trace Ridges is a fully automatic and fast algorithm that combines a series of image-processing algorithms including filtering, watershed transform and edge detection to obtain an accurate delineation of the fibre-like structures in a rapid time. To compare the algorithms, four biomedical data sets with very different characteristics were selected. Ground truth was obtained by manual delineation of the fibre-like structures. Three pre-processing filtering options were used as a first step: no filtering, Gaussian low-pass and DnCnn, a deep-learning filtering. Three distance error metrics (total, average and maximum distance from the obtained traces to the ground truth) and processing time were calculated. It was observed that no single algorithm outperformed the others in all metrics. For the total distance error, which was considered the most significative, Trace Ridges ranked first, followed by Graph Based, U-Net, Twombli, Scale Space, CT Fire and Edge Detection. In terms of speed, Trace Ridges ranked second only slightly slower than Edge Detection. Code is freely available atgithub.com/youssefarafat/Trace Ridges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3