The relationship between event boundary strength and pattern shifts across the cortical hierarchy during naturalistic movie-viewing

Author:

Lee YoonjungORCID,Chen JaniceORCID

Abstract

AbstractOur continuous experience is spontaneously segmented by the brain into discrete events. However, the beginning of a new event (an event boundary) is not always sharply identifiable: phenomenologically, event boundaries vary in salience. How are the response profiles of cortical areas at event boundaries modulated by boundary strength during complex, naturalistic movie-viewing? Do cortical responses scale in a graded manner with boundary strength, or do they merely detect boundaries in a binary fashion? We measured “cortical boundary shifts” as transient changes in multi-voxel patterns at event boundaries with different strengths (weak, moderate, and strong), determined by across-subject agreement. Cortical regions with different processing timescales were examined. In auditory areas, which have short timescales, cortical boundary shifts exhibited a clearly graded profile both in group-level and individual-level analyses. In cortical areas with long timescales, including the default mode network, boundary strength modulated pattern shift magnitude at the individual subject level. We also observed a positive relationship between boundary strength and the extent of temporal alignment of boundary shifts across different levels of the cortical hierarchy. Additionally, hippocampal activity was highest at event boundaries for which cortical boundary shifts were most aligned across hierarchical levels. Overall, we found that event boundary strength modulated cortical pattern shifts strongly in sensory areas and more weakly in higher-level areas, and that stronger boundaries were associated with greater alignment of these shifts across the cortical hierarchy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3