Applying multi-state modeling using AlphaFold2 for kinases and its application for ensemble screening

Author:

Song Jinung,Ha Junsu,Lee Juyong,Ko Junsu,Shin Woong-HeeORCID

Abstract

AbstractStructure-based virtual screening (SBVS) is a pivotal computational approach in drug discovery, enabling the identification of potential drug candidates within vast chemical libraries by predicting their interactions with target proteins. The SBVS relies on the receptor protein structures, making it sensitive to structural variations. Kinase, one of the major drug targets, is known as one of the typical examples of an active site conformation change caused by the type of binding inhibitors. Examination of human kinase structures shows that the majority of conformations have the DFGin state. Thus, SBVS using the structures might cause a favor of type of ligand type I inhibitors, bind to the DFGin state, rather than finding the diverse scaffolds. Recent advances in protein structure prediction, such as AlphaFold2 (AF2), offer promising solutions but may still be possibly influenced by the structural bias in existing templates. To address these challenges, we introduce a multi-state modeling (MSM) protocol for kinase structures. We apply MSM to AF2 by providing state-specific templates, allowing us to overcome structural biases and thus apply them to kinase SBVS. We benchmarked our MSM models in three categories: quality of predicted models, reproducibility of ligand binding poses, and identification of hit compounds by ensemble SBVS. The results demonstrate that MSM-generated models exhibit comparable or improved structural accuracy compared to standard AF2 models. We also show that MSM models enhance the accuracy of cognate docking, effectively capturing the interactions between kinases and their ligands.In virtual screening experiments using DUD-E compound libraries, our MSM approach consistently outperforms standard AF2 modeling. Notably, MSM-based ensemble screening excels in identifying diverse hit compounds for kinases with structurally diverse active sites, surpassing standard AF2 models. We highlight the potential of MSM in broadening the scope of kinase inhibitor discovery by facilitating the identification of chemically diverse inhibitors.Author SummaryOne of the main problems with structure-based virtual screening is structural flexibility. Ensemble screening is one of the conventional approaches to solving the issue. Gathering experimental structures or molecular simulations could be used to compile the receptor structures. Recent developments in algorithms for predicting protein structures, like AlphaFold2, suggest that different receptor conformations could be produced. However, the prediction approaches produce biased structures because of the bias in the structure database. In order to solve the problem, we developed a protocol called multi-state modeling for kinases. Rather than supplying multiple sequence alignments as an input, we gave the AlphaFold2 a specific template structure and the sequence alignment between the template and query.Our findings imply that our technique can yield a particular structural state of interest with an enhanced or comparable structural quality to AlphaFold2 and predict highly accurate protein-ligand complex structures. Lastly, compared to the typical AlphaFold2 models, ensemble screening using the multi-state modeling approach improves the structure-based virtual screening performance, particularly for diverse active molecular scaffolds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3