Wax “tails” enable planthopper nymphs to self-right midair and land on their feet

Author:

McDonald Christina L.,Alcalde Gerwin T.,Jones Thomas C.,Laude Ruby Ana P.,Yap Sheryl A.ORCID,Bhamla M. SaadORCID

Abstract

AbstractThe striking appearance of wax ‘tails’ — posterior wax projections on planthopper nymphs — has captivated entomologists and naturalists alike. Despite their intriguing presence, the functional roles of these structures remain largely unexplored. This study leverages high-speed imaging to uncover the biomechanical implications of these wax formations in the aerial dynamics of planthopper nymphs (Ricania sp.). We quantitatively demonstrate that removing wax tails significantly increases body rotations during jumps. Specifically, nymphs without wax projections undergo continuous rotations, averaging 4.3±1.9 per jump, in contrast to wax-intact nymphs, who narrowly complete a full rotation, averaging only 0.7±0.2 per jump. This suggests that wax structures effectively counteract rotation through aerodynamic drag forces. These stark differences in body rotation correlate with landing success: nymphs with wax intact achieve a near perfect landing rate of 98.5%, while those without wax manage only a 35.5% success rate. Jump trajectory analysis reveals transitions from parabolic to Tartaglia shapes at higher take-off velocities for wax-intact nymphs, illustrating how wax structures assist nymphs in achieving stable, controlled descents. Our findings confirm the aerodynamic self-righting functionality of wax tails in stabilizing planthopper landings, advancing our understanding of the complex interplay between wax morphology and aerial maneuverability, with broader implications for the evolution of flight in wingless insects and bioinspired robotics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3