AI-based model for T1-weighted brain MRI diagnoses Amyotrophic Lateral Sclerosis

Author:

Turrisi Rosanna,Forzanini Federica,Stanziano Mario,Nigri Anna,Fedeli Davide,Giovanna Carrara,Laura Lequio,Manera Umberto,Moglia Cristina,Valentini Maria Consuelo,Calvo Andrea,Chiò Adriano,Barla Annalisa

Abstract

AbstractAmyotrophic Lateral Sclerosis (ALS) is an incurable deadly motor neuron disease that causes the gradual deterioration of nerve cells in the spinal cord and brain. It impacts voluntary limb control and can result in breathing impairment. ALS diagnosis is often challenging due to its symptoms overlapping with other medical conditions and many tests must be performed to rule out other conditions, as easily identifiable biomarkers are still lacking. In this study, we explore T1-weighted (T1w) brain Magnetic Resonance Imaging (MRI), a non-invasive neuroimaging approach which has shown to be a reliable biomarker in many medical fields. Nonetheless, current literature on ALS diagnosis fails to retrieve evidence on how to identify biomarkers from T1w MRI.In this paper, we leverage Artificial Intelligence (AI) methods to unveil the unexplored potential of T1w brain MRI for distinguishing ALS patients from those who have similar symptoms but different diseases (mimicking). We consider a retrospective single-center dataset of brain T1-weighted MRIs collected from 2010 to 2018 recruited from the Piemonte and Valle d’Aosta ALS register (PARALS). The collection includes 548 patients with ALS and 106 with mimicking diseases. Our goal is to develop and validate a ML diagnostic model based exclusively on T1w MRI distinguishing the two classes. First, we extract a set of radiomic features and two sets of Deep Learning (DL)-based features from MRI scans. Then, using each representation, we train 8 binary classifiers. The best results were obtained by combining DL-based features with SVM classifier, reaching an F1-score of 0.91, and a Precision of 0.88, a Recall of 0.94, and an AUC of 0.7 considering the ALS group as the positive class in the testing set.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3