Blind source separation of event-related potentials using a recurrent neural network

Author:

O’Reilly Jamie A.ORCID,Sunthornwiriya-Amon Hassapong,Aparprasith Naradith,Kittichalao Pannapa,Chairojwong Pornnaphas,Klai-on Thanabodee,Lannon Edward W.ORCID

Abstract

AbstractEvent-related potentials (ERPs) are a superposition of electric potential differences generated by neurophysiological activity associated with psychophysical events. Spatiotemporal dissociation of these signal sources can supplement conventional ERP analysis and improve source localization. However, results from established source separation methods applied to ERPs can be challenging to interpret. Hence, we have developed a recurrent neural network (RNN) method for blind source separation. The RNN transforms input step pulse signals representing events into corresponding ERP difference waveforms. Source waveforms are obtained from penultimate layer units and scalp maps are obtained from feed-forward output layer weights that project these source waveforms onto EEG electrode amplitudes. An interpretable, sparse source representation is achieved by incorporating L1 regularization of signals obtained from the penultimate layer of the network during training. This RNN method was applied to four ERP difference waveforms (MMN, N170, N400, P3) from the open-access ERP CORE database, and independent component analysis (ICA) was applied to the same data for comparison. The RNN decomposed these ERPs into eleven spatially and temporally separate sources that were less noisy, tended to be more ERP-specific, and were less similar to each other than ICA-derived sources. The RNN sources also had less ambiguity between source waveform amplitude, scalp potential polarity, and equivalent current dipole orientation than ICA sources. In conclusion, the proposed RNN blind source separation method can be effectively applied to grand-average ERP difference waves and holds promise for further development as a computational model of event-related neural signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3