Abstract
ABSTRACTMorphogens are intercellular signaling molecules providing spatial information to cells in developing tissues to coordinate cell fate decisions. The spatial information is encoded within long-ranged concentration gradients of the morphogen. Direct measurement of morphogen dynamics in a range of systems suggests that local and global diffusion coefficients can differ by orders of magnitude. Further, local diffusivity can be large, which would potentially abolish any concentration gradient rapidly. Such observations have led to alternative transport models being proposed, including transcytosis and cytonemes. Here, we show that accounting for tissue architecture combined with receptor binding is sufficient to hinder the diffusive dynamics of morphogens, leading to an order of magnitude decrease in the effective diffusion coefficient from local to global scales. In particular, we built a realisticin silicoarchitecture of the extracellular spaces of the zebrafish brain using light and electron microscopy data. Simulations on realistic architectures demonstrate that tortuosity and receptor binding within these spaces are sufficient to reproduce experimentally measured morphogen dynamics. Importantly, this work demonstrates that hindered diffusion is a viable mechanism for gradient formation, without requiring additional regulatory control.SIGNIFICANCEMeasurements of morphogen diffusivity vary significantly depending on experimental approach. Such differences have been used to argue against diffusion as a viable mechanism of morphogen gradient formation. Here, we demonstrate that accounting for the local tissue architecture in concert with including receptor binding is sufficient to explain a range of biological observations. This demonstrates that (hindered) diffusion-driven transport is a viable mechanism of gradient formation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献