A Computational Algorithm for Optimal Design of Bioartificial Organ Scaffold Architectures

Author:

Bukač Martina,Čanić SunčicaORCID,Muha Boris,Wang Yifan

Abstract

AbstractWe develop a computational algorithm based on a diffuse interface approach to study the design of bioartificial organ scaffold architectures. These scaffolds, composed of poroelastic hydrogels housing transplanted cells, are linked to the patient’s blood circulation via an anastomosis graft. Before entering the scaffold, the blood flow passes through a filter, and the resulting filtered blood plasma transports oxygen and nutrients to sustain the viability of transplanted cells over the long term. A key issue in maintaining cell viability is the design of ultrafiltrate channels within the hydrogel scaffold to facilitate advection-enhanced oxygen supply ensuring oxygen levels remain above a critical threshold to prevent hypoxia. In this manuscript, we develop a computational algorithm to analyze the plasma flow and oxygen concentration within hydrogels featuring various channel geometries. Our objective is to identify the optimal hydrogel channel architecture that sustains oxygen concentration throughout the scaffold above the critical hypoxic threshold.The computational algorithm we introduce here employs a diffuse interface approach to solve a multi-physics problem. The corresponding model couples the time-dependent Stokes equations, governing blood plasma flow through the channel network, with the time-dependent Biot equations, characterizing Darcy velocity, pressure, and displacement within the poroelastic hydrogel containing the transplanted cells. Subsequently, the calculated plasma velocity is utilized to determine oxygen concentration within the scaffold using a diffuse interface advection-reaction-diffusion model. Our investigation yields a scaffold architecture featuring a hexagonal channel network geometry that meets the desired oxygen concentration criteria. Unlike classical sharp interface approaches, the diffuse interface approach we employ is particularly adept at addressing problems with intricate interface geometries, such as those encountered in bioartificial organ scaffold design. This study is significant because recent developments in hydrogel fabrication make it now possible to control hydrogel rheology [20, 14], and utilize computational results to generate optimized scaffold architectures.MSC codes76S05; 76-04; 76D05; 92-10; 92-04

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3