Dietary stress induced macrophage metabolic reprogramming, a determinant of animal growth

Author:

Mahanta Anusree,Najar Sajad Ahmad,Hariharan Nivedita,Goyal Manisha,Subramanian RamaswamyORCID,Giangrande AngelaORCID,Palakodeti DasaradhiORCID,Mukherjee TinaORCID

Abstract

AbstractNutrient sensing and signaling play pivotal roles in animal growth. However, under dietary stress, this system falters, leading to growth defects. While immune cells are increasingly recognized as key nutrient sensors, their impact on animal growth remains poorly understood. In this study, we investigate howDrosophilalarval macrophages respond to excessive dietary sugar and identify a reconfiguration of their metabolic state. They undergo a glycolytic shift, intensify TCA activity, and elevate TAG synthesis. While typical of sugarinduced nutrient stress, these changes interestingly exert contrasting effects on animal growth: glycolysis and increased TCA activity inhibit growth, while the lipogenic shift promotes it. However, the lipogenic response is insufficient to counteract the metabolic events suppressing growth, resulting in an overall reduction in adult fly size under high sugar conditions. Stimulating a pro-lipogenic immune state facilitates growth recovery, suggesting a growth paradigm governed by immune-metabolic transitions. This study unveils the unexpected influence of macrophage metabolic reprogramming on organismal growth homeostasis duringDrosophiladevelopment, highlighting immune cell states as central determinants of growth, particularly under dietary stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3