A latent variable model for evaluating mutual exclusivity and co-occurrence between driver mutations in cancer

Author:

Shuaibi Ahmed,Chitra Uthsav,Raphael Benjamin J.ORCID

Abstract

AbstractA key challenge in cancer genomics is understanding the functional relationships and dependencies between combinations of somatic mutations that drive cancer development. Suchdrivermutations frequently exhibit patterns ofmutual exclusivityorco-occurrenceacross tumors, and many methods have been developed to identify such dependency patterns from bulk DNA sequencing data of a cohort of patients. However, while mutual exclusivity and co-occurrence are described as properties of driver mutations, existing methods do not explicitly disentangle functional, driver mutations from neutral,passengermutations. In particular, nearly all existing methods evaluate mutual exclusivity or co-occurrence at the gene level, marking a gene as mutated if any mutation – driver or passenger – is present. Since some genes have a large number of passenger mutations, existing methods either restrict their analyses to a small subset of suspected driver genes – limiting their ability to identify novel dependencies – or make spurious inferences of mutual exclusivity and co-occurrence involving genes with many passenger mutations. We introduce DIALECT, an algorithm to identify dependencies between pairs ofdrivermutations from somatic mutation counts. We derive a latent variable mixture model for drivers and passengers that combines existing probabilistic models of passenger mutation rates with a latent variable describing the unknown status of a mutation as a driver or passenger. We use an expectation maximization (EM) algorithm to estimate the parameters of our model, including the rates of mutually exclusivity and co-occurrence between drivers. We demonstrate that DIALECT more accurately infers mutual exclusivity and co-occurrence between driver mutations compared to existing methods on both simulated mutation data and somatic mutation data from 5 cancer types in The Cancer Genome Atlas (TCGA).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3