Assessment of non-linear mixed effects model-based approaches to test for drug effect using simulated data: type I error and power properties

Author:

Chasseloup E.,Tessier A.,Karlsson M.O.ORCID

Abstract

1AbstractPharmacometric approaches achieves higher power to detect a drug effect compared to traditional statistical hypothesis tests. Known drawbacks come from the model building process where multiple testing and model misspecification are major causes for type I error inflation. IMA is a new approach using mixture models and the likelihood ratio test (LRT) to test for drug effect. It previously showed type I error control and unbiased drug estimates in the context of two-arms balanced designs using real placebo data, in comparison to the standard approach (STD). The aim of this study was to extend the assessment of IMA and STD regarding type I error, power, and bias in the drug effect estimates under various types of model misspecification, with or without LRT calibration. Two classical statistical approaches, t-test and Mixed-Effect Model Repeated Measure (MMRM), were also added to the comparison. The focus was a simulation study where the extent of the model misspecification is known, using a response model with or without drug effect as motivating example in two sample size scenarios.The IMA performances were overall not impacted by the sample size or the LRT calibration, contrary to STD which had better type I error results with the larger sample size and calibrated LRT. In terms of power STD required LRT calibration to outperform IMA. T-test and MMRM had both controlled type I error. The t-test had a lower power than both STD and IMA while MMRM had power predictions similar to IMA. IMA and STD had similarly unbiased drug effect estimates, with few exceptions.IMA showed again encouraging performances (type I error control and unbiased drug estimates) and presented reasonable power predictions. The IMA performances were overall more robust towards model mis-specification compared to STD. IMA confirmed its status of promising NLMEM-based approach for hypothesis testing of the drug effect and could be used in the future, after further evaluations, as primary analysis in confirmatory trials.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. Comparisons of analysis methods for proof-of-concept trials;CPT: pharmacometrics & systems pharmacology,2013

2. Improved utilization of ADAS-cog assessment data through item response theory based pharmacometric modeling;Pharmaceutical research,2014

3. Using the framework method for the analysis of qualitative data in multi-disciplinary health research

4. Dosne A-G (2016) Improved methods for pharmacometric model-based decision-making in clinical drug development. PhD thesis, Acta Universitatis Upsaliensis

5. Evaluation of Type I Error Rates When Modeling Ordered Categorical Data in NONMEM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3